Learning and Optimization with Submodular Functions

نویسندگان

  • Bharath Sankaran
  • Marjan Ghazvininejad
  • Xinran He
  • David C. Kale
  • Liron Cohen
چکیده

In many naturally occurring optimization problems one needs to ensure that the definition of the optimization problem lends itself to solutions that are tractable to compute. In cases where exact solutions cannot be computed tractably, it is beneficial to have strong guarantees on the tractable approximate solutions. In order operate under these criterion most optimization problems are cast under the umbrella of convexity or submodularity. In this report we will study design and optimization over a common class of functions called submodular functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results about the Contractions and the Pendant Pairs of a Submodular System

Submodularity is an important  property of set functions with deep theoretical results  and various  applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization.  Nowadays submodular functions optimization has been attracted by many researchers.  Pendant pairs of a symmetric...

متن کامل

Learning with Submodular Functions: A Convex Optimization Perspective

Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analy...

متن کامل

Submodular Functions: Learnability, Structure, and Optimization

Submodular functions are discrete functions that model laws of diminishing returns and enjoy numerous algorithmic applications. They have been used in many areas, including combinatorial optimization, machine learning, and economics. In this work we study submodular functions from a learning theoretic angle. We provide algorithms for learning submodular functions, as well as lower bounds on the...

متن کامل

On Learning Submodular Functions A Preliminary Draft

Submodular functions are a central concept in combinatorial optimization. The wide collection of optimization problems involving submodular functions encompasses many important combinatorial problems, such as Min-Cut and Max-Cut in graphs, various plant location problems, etc. In the operations research literature, many heuristics, exact algorithms, and approximation algorithms have been develo...

متن کامل

Submodular Functions: Optimization and Approximation

Submodular functions are discrete analogue of convex functions, arising in various fields of applied mathematics including game theory, information theory, and queueing theory. This survey aims at providing an overview on fundamental properties of submodular functions and recent algorithmic developments of their optimization and approximation. For submodular function minimization, the ellipsoid...

متن کامل

Differentiable Submodular Maximization

We consider learning of submodular functions from data. These functions are important in machine learning and have a wide range of applications, e.g. data summarization, feature selection and active learning. Despite their combinatorial nature, submodular functions can be maximized approximately with strong theoretical guarantees in polynomial time. Typically, learning the submodular function a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1505.01576  شماره 

صفحات  -

تاریخ انتشار 2015